	Required cooling capacity (W/m²)		Required heating capacity (W/m²)	
Location (m²)				
	Standard	Range	Standard	Range
Residence	180	151 ~ 196	200	171 ~ 221
PC room	185	160~210	260	199 ~ 260
Hotel room	185	160~210	260	199 ~ 260
Restaurant	255	221 ~ 288	400	350 ~ 456
Shop	230	199 ~ 260	350	300 ~ 392
Office	185	160~210	230	199 ~ 260

Ps: Standard height of room is 2.8m

Corrected value = standard (W/m^2) x room (m^2) x height of room / 2.8 x 1.1 (if there is a western exposure) x 1.1 (if there is a french window)

Required cooling capacity after calculation = X	Model	
X≤ 2600W	Inverter or OnOff 9K	
2600 < X ≤ 3300W	Inverter or OnOff 12K	
3300W < X ≤ 5000W	Inverter or OnOff 18K	
5000 < X ≤ 6500W	Inverter or OnOff 24K	

For example: there is a residence room 20 m^2 with 3m high, a western exposure and a french window Required cooling capacity is 180 x 20 x 3/2.8 x 1.1 x 1.1 = 4667W It is better to choose Inverter 18K model